博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
cluster-proportional-autoscaler源码分析及如何解决KubeDNS性能瓶颈
阅读量:7038 次
发布时间:2019-06-28

本文共 14235 字,大约阅读时间需要 47 分钟。

hot3.png

Author:

工作机制

是kubernetes的孵化项目之一,用来根据集群规模动态的扩缩容指定的namespace下的target(只支持RC, RS, Deployment),还不支持对StatefulSet。目前只提供两种autoscale模式,一种是linear,另一种是ladder,你能很容易的定制开发新的模式,代码接口非常清晰。

cluster-proportional-autoscaler工作机制很简单,每隔一定时间(通过--poll-period-seconds配置,默认10s)重复进行如下操作:

  • 统计一次集群中ScheduableNodes和ScheduableCores;
  • 从apiserver中获取最新configmap数据;
  • 根据对应的autoscale模式,进行configmap参数解析;
  • 据对应的autoscale模式,计算新的期望副本数;
  • 如果与上一次期望副本数不同,则调用Scale接口触发AutoScale;

配置说明

cluster-proportional-autoscaler一共有下面6项flag:

  • --namespace: 要autoscale的对象所在的namespace;
  • --target: 要autoscale的对象,只支持deployment/replicationcontroller/replicaset,不区分大小写;
  • --configmap: 配置实现创建好的configmap,里面存储要使用的模式及其配置,后面会有具体的示例;
  • --default-params: 如果--configmap中配置的configmap不存在或者后来被删除了,则使用该配置来创建新的configmap,建议要配置;
  • --poll-period-seconds: 检查周期,默认为10s。
  • --version: 打印vesion并退出。

源码分析

pollAPIServer

pkg/autoscaler/autoscaler_server.go:82func (s *AutoScaler) pollAPIServer() {	// Query the apiserver for the cluster status --- number of nodes and cores	clusterStatus, err := s.k8sClient.GetClusterStatus()	if err != nil {		glog.Errorf("Error while getting cluster status: %v", err)		return	}	glog.V(4).Infof("Total nodes %5d, schedulable nodes: %5d", clusterStatus.TotalNodes, clusterStatus.SchedulableNodes)	glog.V(4).Infof("Total cores %5d, schedulable cores: %5d", clusterStatus.TotalCores, clusterStatus.SchedulableCores)	// Sync autoscaler ConfigMap with apiserver	configMap, err := s.syncConfigWithServer()	if err != nil || configMap == nil {		glog.Errorf("Error syncing configMap with apiserver: %v", err)		return	}	// Only sync updated ConfigMap or before controller is set.	if s.controller == nil || configMap.ObjectMeta.ResourceVersion != s.controller.GetParamsVersion() {		// Ensure corresponding controller type and scaling params.		s.controller, err = plugin.EnsureController(s.controller, configMap)		if err != nil || s.controller == nil {			glog.Errorf("Error ensuring controller: %v", err)			return		}	}	// Query the controller for the expected replicas number	expReplicas, err := s.controller.GetExpectedReplicas(clusterStatus)	if err != nil {		glog.Errorf("Error calculating expected replicas number: %v", err)		return	}	glog.V(4).Infof("Expected replica count: %3d", expReplicas)	// Update resource target with expected replicas.	_, err = s.k8sClient.UpdateReplicas(expReplicas)	if err != nil {		glog.Errorf("Update failure: %s", err)	}}

GetClusterStatus

GetClusterStatus用于统计集群中SchedulableNodes, SchedulableCores,用于后面计算新的期望副本数。

pkg/autoscaler/k8sclient/k8sclient.go:142func (k *k8sClient) GetClusterStatus() (clusterStatus *ClusterStatus, err error) {	opt := metav1.ListOptions{Watch: false}	nodes, err := k.clientset.CoreV1().Nodes().List(opt)	if err != nil || nodes == nil {		return nil, err	}	clusterStatus = &ClusterStatus{}	clusterStatus.TotalNodes = int32(len(nodes.Items))	var tc resource.Quantity	var sc resource.Quantity	for _, node := range nodes.Items {		tc.Add(node.Status.Capacity[apiv1.ResourceCPU])		if !node.Spec.Unschedulable {			clusterStatus.SchedulableNodes++			sc.Add(node.Status.Capacity[apiv1.ResourceCPU])		}	}	tcInt64, tcOk := tc.AsInt64()	scInt64, scOk := sc.AsInt64()	if !tcOk || !scOk {		return nil, fmt.Errorf("unable to compute integer values of schedulable cores in the cluster")	}	clusterStatus.TotalCores = int32(tcInt64)	clusterStatus.SchedulableCores = int32(scInt64)	k.clusterStatus = clusterStatus	return clusterStatus, nil}
  • Nodes数量统计时,是会剔除掉那些 Unschedulable Nodes的。
  • Cores数量统计时,是会减掉那些 Unschedulable Nodes对应Capacity。
    • 请注意,这里计算Cores时统计的是Node的Capacity,而不是Allocatable。
    • 我认为,使用Allocatable要比Capacity更好。
    • 这两者在大规模集群时就会体现出差别了,比如每个Node Allocatable比Capacity少1c4g,那么2K个Node集群规模时,就相差2000c8000g,这将是的target object number相差很大。

有些同学可能要问:Node Allocatable和Capacity有啥不同呢?

  • Capacity是Node硬件层面提供的全部资源,服务器配置的多少内存,cpu核数等,都是由硬件决定的。
  • Allocatable则要在Capacity的基础上减去kubelet flag中配置的kube-resreved和system-reserved资源大小,是Kubernetes给应用真正可分配的资源数。

syncConfigWithServer

syncConfigWithServer主要是从apiserver中获取最新configmap数据,注意这里并没有去watch configmap,而是按照--poll-period-seconds(默认10s)定期的去get,所以默认会存在最多10s的延迟。

pkg/autoscaler/autoscaler_server.go:124func (s *AutoScaler) syncConfigWithServer() (*apiv1.ConfigMap, error) {	// Fetch autoscaler ConfigMap data from apiserver	configMap, err := s.k8sClient.FetchConfigMap(s.k8sClient.GetNamespace(), s.configMapName)	if err == nil {		return configMap, nil	}	if s.defaultParams == nil {		return nil, err	}	glog.V(0).Infof("ConfigMap not found: %v, will create one with default params", err)	configMap, err = s.k8sClient.CreateConfigMap(s.k8sClient.GetNamespace(), s.configMapName, s.defaultParams)	if err != nil {		return nil, err	}	return configMap, nil}
  • 如果配置的--configmap在集群中已经存在,则从apiserver中获取最新的configmap并返回;
  • 如果配置的--configmap在集群中不存在,则根据--default-params的内容创建一个configmap并返回;
  • 如果配置的--configmap在集群中不存在,且--default-params又没有配置,则返回nil,意味着失败,整个流程结束,使用时请注意!

建议一定要配置--default-params,因为--configmap配置的configmap有可能有意或者无意的被管理员/用户删除了,而你又没配置--default-params,那么这个时候pollAPIServer将就此结束,因为着你没达到autoscale target的目的,关键是你可能并在不知道集群这个时候出现了这个情况。

EnsureController

EnsureController用来根据configmap中配置的controller type创建对应Controller及解析参数。

pkg/autoscaler/controller/plugin/plugin.go:32// EnsureController ensures controller type and scaling paramsfunc EnsureController(cont controller.Controller, configMap *apiv1.ConfigMap) (controller.Controller, error) {	// Expect only one entry, which uses the name of control mode as the key	if len(configMap.Data) != 1 {		return nil, fmt.Errorf("invalid configMap format, expected only one entry, got: %v", configMap.Data)	}	for mode := range configMap.Data {		// No need to reset controller if control pattern doesn't change		if cont != nil && mode == cont.GetControllerType() {			break		}		switch mode {		case laddercontroller.ControllerType:			cont = laddercontroller.NewLadderController()		case linearcontroller.ControllerType:			cont = linearcontroller.NewLinearController()		default:			return nil, fmt.Errorf("not a supported control mode: %v", mode)		}		glog.V(1).Infof("Set control mode to %v", mode)	}	// Sync config with controller	if err := cont.SyncConfig(configMap); err != nil {		return nil, fmt.Errorf("Error syncing configMap with controller: %v", err)	}	return cont, nil}
  • 检查configmap data中是否只有一个entry,如果不是,则该configmap不合法,流程结束;
  • 检查controller的类型是否为linearladder其中之一,并调用对应的方法创建对应的Controller,否则返回失败;
    • linear --> NewLinearController
    • ladder --> NewLadderController
  • 调用对应Controller的SyncConfig解析configmap data中参数和configmap ResourceVersion更新到Controller对象中;

GetExpectedReplicas

linear和ladder Controller分别实现了自己的GetExpectedReplicas方法,用来计算期望此次监控到的数据应该有的副本数。具体的看下面关于Linear Controller和Ladder Controller部分。

UpdateReplicas

UpdateReplicas将GetExpectedReplicas计算得到的期望副本数,通过调用对应target(rc/rs/deploy)对应的Scale接口,由Scale去完成target的缩容扩容。

pkg/autoscaler/k8sclient/k8sclient.go:172func (k *k8sClient) UpdateReplicas(expReplicas int32) (prevRelicas int32, err error) {	scale, err := k.clientset.Extensions().Scales(k.target.namespace).Get(k.target.kind, k.target.name)	if err != nil {		return 0, err	}	prevRelicas = scale.Spec.Replicas	if expReplicas != prevRelicas {		glog.V(0).Infof("Cluster status: SchedulableNodes[%v], SchedulableCores[%v]", k.clusterStatus.SchedulableNodes, k.clusterStatus.SchedulableCores)		glog.V(0).Infof("Replicas are not as expected : updating replicas from %d to %d", prevRelicas, expReplicas)		scale.Spec.Replicas = expReplicas		_, err = k.clientset.Extensions().Scales(k.target.namespace).Update(k.target.kind, scale)		if err != nil {			return 0, err		}	}	return prevRelicas, nil}

下面是对Linear Controller和Ladder Controller具体实现的代码分析。

Linear Controller

先来看看linear Controller的参数:

pkg/autoscaler/controller/linearcontroller/linear_controller.go:50type linearParams struct {	CoresPerReplica           float64 `json:"coresPerReplica"`	NodesPerReplica           float64 `json:"nodesPerReplica"`	Min                       int     `json:"min"`	Max                       int     `json:"max"`	PreventSinglePointFailure bool    `json:"preventSinglePointFailure"`}

写configmap时,参考如下:

kind: ConfigMapapiVersion: v1metadata:  name: nginx-autoscaler  namespace: defaultdata:  linear: |-    {       "coresPerReplica": 2,      "nodesPerReplica": 1,      "preventSinglePointFailure": true,      "min": 1,      "max": 100    }

其他参数不多说,我想提的是PreventSinglePointFailure,字面意思是防止单点故障,是一个bool值,代码中没有进行显示的初始化,意味着默认为false。可以在对应的configmap data或者dafault-params中设置"preventSinglePointFailure": true,但设置为true后,如果schedulableNodes > 1,则会保证target's replicas至少为2,也就是防止了target单点故障。

pkg/autoscaler/controller/linearcontroller/linear_controller.go:101func (c *LinearController) GetExpectedReplicas(status *k8sclient.ClusterStatus) (int32, error) {	// Get the expected replicas for the currently schedulable nodes and cores	expReplicas := int32(c.getExpectedReplicasFromParams(int(status.SchedulableNodes), int(status.SchedulableCores)))	return expReplicas, nil}func (c *LinearController) getExpectedReplicasFromParams(schedulableNodes, schedulableCores int) int {	replicasFromCore := c.getExpectedReplicasFromParam(schedulableCores, c.params.CoresPerReplica)	replicasFromNode := c.getExpectedReplicasFromParam(schedulableNodes, c.params.NodesPerReplica)	// Prevent single point of failure by having at least 2 replicas when	// there are more than one node.	if c.params.PreventSinglePointFailure &&		schedulableNodes > 1 &&		replicasFromNode < 2 {		replicasFromNode = 2	}	// Returns the results which yields the most replicas	if replicasFromCore > replicasFromNode {		return replicasFromCore	}	return replicasFromNode}func (c *LinearController) getExpectedReplicasFromParam(schedulableResources int, resourcesPerReplica float64) int {	if resourcesPerReplica == 0 {		return 1	}	res := math.Ceil(float64(schedulableResources) / resourcesPerReplica)	if c.params.Max != 0 {		res = math.Min(float64(c.params.Max), res)	}	return int(math.Max(float64(c.params.Min), res))}
  • 根据schedulableCores和configmap中的CoresPerReplica,按照如下公式计算得到replicasFromCore;
    • replicasFromCore = ceil( schedulableCores * 1/CoresPerReplica )
  • 根据schedulableNodes和configmap中的NodesPerReplica,按照如下公式计算得到replicasFromNode;
    • replicasFromNode = ceil( schedulableNodes * 1/NodesPerReplica ) )
  • 如果configmap中配置了min或者max,则必须保证replicas在min和max范围内;
    • replicas = min(replicas, max)
    • replicas = max(replicas, min)
  • 如果配置了preventSinglePointFailure为true并且schedulableNodes > 1,则根据前面提到的逻辑进行防止单点故障,replicasFromNode必须大于2;
    • replicasFromNode = max(2, replicasFromNode)
  • 返回replicasFromNode和replicasFromCore中的最大者作为期望副本数。

概括起来,linear controller计算replicas的公式为:

replicas = max( ceil( cores * 1/coresPerReplica ) , ceil( nodes * 1/nodesPerReplica ) )replicas = min(replicas, max)replicas = max(replicas, min)

Ladder Controller

下面是ladder Controller的参数结构:

pkg/autoscaler/controller/laddercontroller/ladder_controller.go:66type paramEntry [2]inttype paramEntries []paramEntrytype ladderParams struct {	CoresToReplicas paramEntries `json:"coresToReplicas"`	NodesToReplicas paramEntries `json:"nodesToReplicas"`}

写configmap时,参考如下:

kind: ConfigMapapiVersion: v1metadata:  name: nginx-autoscaler  namespace: defaultdata:  ladder: |-    {       "coresToReplicas":      [        [ 1,1 ],        [ 3,3 ],        [256,4],        [ 512,5 ],        [ 1024,7 ]      ],      "nodesToReplicas":      [        [ 1,1 ],        [ 2,2 ],        [100, 5],        [200, 12]      ]    }

下面是ladder Controller对应的计算期望副本值的方法。

func (c *LadderController) GetExpectedReplicas(status *k8sclient.ClusterStatus) (int32, error) {	// Get the expected replicas for the currently schedulable nodes and cores	expReplicas := int32(c.getExpectedReplicasFromParams(int(status.SchedulableNodes), int(status.SchedulableCores)))	return expReplicas, nil}func (c *LadderController) getExpectedReplicasFromParams(schedulableNodes, schedulableCores int) int {	replicasFromCore := getExpectedReplicasFromEntries(schedulableCores, c.params.CoresToReplicas)	replicasFromNode := getExpectedReplicasFromEntries(schedulableNodes, c.params.NodesToReplicas)	// Returns the results which yields the most replicas	if replicasFromCore > replicasFromNode {		return replicasFromCore	}	return replicasFromNode}func getExpectedReplicasFromEntries(schedulableResources int, entries []paramEntry) int {	if len(entries) == 0 {		return 1	}	// Binary search for the corresponding replicas number	pos := sort.Search(		len(entries),		func(i int) bool {			return schedulableResources < entries[i][0]		})	if pos > 0 {		pos = pos - 1	}	return entries[pos][1]}
  • 根据schedulableCores在configmap中的CoresToReplicas定义的那个范围中,就选择预先设定的期望副本数。
  • 根据schedulableNodes在configmap中的NodesToReplicas定义的那个范围中,就选择预先设定的期望副本数。
  • 返回上面两者中的最大者作为期望副本数。

注意:

  • ladder模式下,没有防止单点故障的设置项,用户配置configmap时候要自己注意;
  • ladder模式下,没有NodesToReplicas或者CoresToReplicas对应的配置为空,则对应的replicas设为1;

比如前面举例的configmap,如果集群中schedulableCores=400(对应期望副本为4),schedulableNodes=120(对应期望副本为5),则最终的期望副本数为5.

使用kube-dns-autoscaler解决KubeDNS性能瓶颈问题

通过如下yaml文件创建kube-dns-autoscaler Deployment和configmap, kube-dns-autoscaler每个30s会进行一次副本数计算检查,并可能触发AutoScale。

kind: ConfigMapapiVersion: v1metadata:  name: kube-dns-autoscaler  namespace: kube-systemdata:  linear: |    {    "nodesPerReplica": 10,    "min": 1,    "max": 50,    "preventSinglePointFailure": true    } ‐‐‐apiVersion: extensions/v1beta1kind: Deploymentmetadata:  name: kube-dns-autoscaler  namespace: kube-systemspec:  template:    metadata:      labels:        k8s-app: kube-dns-autoscaler    spec:      imagePullSecrets:      - name: harborsecret      containers:      - name: autoscaler        image: registry.vivo.xyz:4443/bigdata_release/cluster_proportional_autoscaler_amd64:1.0.0        resources:          requests:            cpu: "50m"            memory: "100Mi"        command:        - /cluster-proportional-autoscaler        - --namespace=kube-system        - --configmap=kube-dns-autoscaler        - --target=Deployment/kube-dns        - --default-params={"linear":{"nodesPerReplica":10,"min":1}}        - --logtostderr=true        - --v=2

总结和展望

  • cluster-proportional-autoscaler代码很简单,工作机制也很单纯,我们希望用它根据集群规模来动态扩展KubeDNS,以解决TensorFlow on Kubernetes项目中大规模的域名解析性能问题。

  • 目前它只支持根据SchedulableNodes和SchedulableCores来autoscale,在AI的场景中,存在集群资源极度压榨的情况,一个集群承载的svc和pod波动范围很大,后续我们可能会开发根据service number来autoscale kubedns的controller。

  • 另外,我还考虑将KubeDNS的部署从AI训练服务器中隔离出来,因为训练时经常会将服务器cpu跑到95%以上,KubeDNS也部署在这台服务器上的话,势必也会影响KubeDNS性能。

转载于:https://my.oschina.net/jxcdwangtao/blog/1581879

你可能感兴趣的文章
Rosenblatt's perceptron
查看>>
1570:基础练习 分解质因数
查看>>
判断ie浏览器7、8、9三个版本
查看>>
GDUFE ACM-1124
查看>>
Schwarz积分公式
查看>>
工作中常用的 Linux 命令
查看>>
English Corner
查看>>
(最短路 SPFA)Invitation Cards -- poj -- 1511
查看>>
两数相加LeetCode
查看>>
列表生成 加1四种方法
查看>>
springboot 处理后端long传给前端精度丢失问题
查看>>
[译文]扩展Repeater控件以支持DataPager分页
查看>>
88. Merge Sorted Array
查看>>
java抽象类和接口区别
查看>>
构建Ruby开发环境(Windows+Eclipse+Aptana Plugin)
查看>>
Miao Xian 隐私政策
查看>>
三维实景下的南极科考站是什么样子?
查看>>
Linux利用scp命令来进行文件复制
查看>>
【LabVIEW技巧】你可以不懂OOP,却不能不懂封装
查看>>
《Programming in Lua 3》读书笔记(十五)
查看>>